Since the default addresses for pip and anaconda are very slow to access in China, adding domestic mirrors for acceleration is necessary.
Main Domestic Open Source Mirrors
Tsinghua University https://tuna.tsinghua.edu.cn
Alibaba Cloud http://mirrors.aliyun.com
Tencent Cloud https://mirrors.tencent.com
University of Science and Technology of China https://mirrors.ustc.edu.cn
University of Science and Technology of China http://mirrors.ustc.edu.cn
Tongji University http://mirrors.tongji.edu.cn
Adding and Modifying Conda Sources
According to actual speed tests in Shanghai, Tsinghua University’s mirror is the fastest (Tongji University should be faster in theory, but the actual speed is disappointing, 0-0), so we’ll use it as the default source.
Method 1: Add via command line
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --set channel_priority strict
conda config --set show_channel_urls yes
Method 2: Modify configuration file
echo 'channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
channel_priority: strict
show_channel_urls: true
' > ~/.condarc
Adding and Modifying pip Sources
Like conda, directly use Tsinghua University’s mirror.
# Method 1: Use -i to specify address during installation, e.g. installing sklearn
## Temporary
pip install scikit-learn -i "https://pypi.tuna.tsinghua.edu.cn/simple"
## Permanent
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
# Method 2: Modify configuration file
mkdir -p ~/.config/pip
echo '[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
' > ~/.config/pip/pip.conf
Summary
Accelerate installation of Python and R packages in China by modifying pip and conda sources.